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1. Introduction

We are concerned in this report with tracking moving sources using a net-
work of aeroacoustic sensors. We assume that the sensors are placed in an
“array of arrays” configuration containing several small-aperture arrays
distributed over a wide area. Each array contains local processing capa-
bility and a communication link with a fusion center. A standard approach
for estimating the source locations involves bearing estimation at the in-
dividual arrays, communication of the bearings to the fusion center, and
processing of the bearing estimates at the fusion center with a tracking al-
gorithm [1–5]. This approach is characterized by low communication band-
width and low complexity, but the localization accuracy may be inferior to
the optimal solution in which the fusion center jointly processes all of the
sensor data. The optimal solution requires high communication bandwidth
and high processing complexity. The amount of improvement in localiza-
tion accuracy that is enabled by greater communication bandwidth and
processing complexity is dependent on the scenario, which we character-
ize in terms of the source motion parameters, the power spectra (and band-
width) of the signals and noise in the sensor data, the coherence between
the source signals received at widely separated sensors, and the observa-
tion time (amount of data). We present a framework to identify scenarios
that have the potential for improved localization accuracy relative to the
standard bearings-only tracking method. We propose an algorithm that is
bandwidth-efficient and nearly optimal that uses beamforming at small-
aperture sensor arrays and time-delay estimation (TDE) between widely
separated sensors.

The sensor signals are modeled as Gaussian random processes, allowing
the inclusion of deterministic as well as random propagation effects. We
have previously studied this model [6] for the case of a single source with
fixed position (no motion). We extend the analysis in this report to moving
sources that follow a parametric motion model.

Accurate time-delay (TD) estimates are required in order to achieve im-
proved localization accuracy relative to bearings-only triangulation. We are
particularly interested in aeroacoustic tracking of ground vehicles using an
array of microphone arrays. Signal coherence is known to degrade with
increased sensor separation for low frequency sounds (10–300 Hz) prop-
agating through air (for examples, see Wilson [7, 8]). Thus it is important
to understand the fundamental limitations of TD and Doppler estimation
when the signals are partially coherent, and we provide a detailed study of
this question in this report. Our results quantify the scenarios in which TDE
is feasible as a function of signal coherence, signal-to-noise ratio (SNR) per
sensor, fractional bandwidth of the signal, and time-bandwidth product of
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the observed data. The basic result is that for a given SNR, fractional band-
width, and time-bandwidth product, there exists a “threshold coherence”
value that must be exceeded in order for TDE to achieve the Cramér-Rao
Bound (CRB). The analysis is based on Ziv-Zakai bounds for TDE, as de-
scribed by Weiss and Weinstein [9,10].

The specific tasks in the statement of work for this contract are as follows.

a. Study alternative approaches to modeling source motion and the im-
pact on localization and tracking performance. Two possible
approaches are as follows:

– Model the sources as nonmoving over a short time interval. The
validity of this model depends on the source velocity and the
length of the time interval.

– Describe the source motion over a time interval with a paramet-
ric model. Evaluate the tradeoffs in processing complexity and
tracking performance associated with each approach.

b. Investigate the performance of algorithms for TDE with partially co-
herent signals that are measured at widely separated aeroacoustic
sensors.

c. Study the impact of compensating for the Doppler effect that is caused
by the source motion. Evaluate the performance improvements
and processing complexity that are associated with Doppler
compensation.

d. Investigate performance bounds on localization accuracy (Cramér-
Rao, Ziv-Zakai, and/or Barankin) that include the signal structure
and the partial signal coherence at distributed arrays.

e. Investigate algorithms for joint tracking and identification that share
information about source location, heading, orientation, and source
signal attributes.

This task was elaborated in the modification of July 2001 as follows:

Classification of ground vehicles is currently performed using fea-
tures derived solely from the signal waveforms measured at dis-
tributed sensors. Classification bounds will be studied that quantify
the amount of additional information that is available if the following
data are used in conjunction with the signal waveforms: target aspect
angle, range, and heading/velocity (obtained from the tracking algo-
rithm), and coherence level of the signals measured at widely sepa-
rated sensors. Acoustic waveforms for ground vehicles as a function
of range, aspect angle, and heading/velocity will be obtained from
existing data files containing moving vehicles and distributed sen-
sors. New measurements may also be required to obtain more com-
plete data sets.
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f. The following task was added in the modification of July 2001:

The previous work has focused on localization of a single source
using widely separated sensors with partial spatial coherence. In-
vestigate extensions of the single-source analysis and techniques to
multiple-source scenarios.

Task a is addressed in section 5 of this report. Tasks b–d are closely related
and are addressed in sections 2–5. Task f is addressed in section 6, where
we present an example with two moving sources. Task e relates to classi-
fication of ground vehicles and is not addressed in this report. We have
developed a theoretical methodology for quantifying the amount of infor-
mation provided by additional “features for classification [11], but we have
not applied the methodology to acoustical signatures of ground vehicles.

This report is organized as follows. The sensor data model is presented in
section 2 for the case of a nonmoving source. TDE with partially coherent
signals is studied in section 3, and section 4 presents a subspace algorithm
for narrowband source localization with distributed arrays and partially
coherent signals. The sensor data model is extended to moving sources in
section 5, and an algorithm is proposed for tracking with an array of arrays.
Section 6 includes an example based on measured aeroacoustic data for two
moving ground vehicles. The report concludes in section 7 with a summary
and concluding remarks.
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2. Data Model for a Nonmoving Source

A model is formulated in this section for the discrete-time signals received
by the sensors in an array of arrays. To begin, suppose a single nonmoving
source is located at coordinates (xs, ys) in the (x, y) plane, and consider
H arrays that are distributed in the same plane, as illustrated in Figure 1.
Each array h ∈ {1, . . . , H} contains Nh sensors and has a reference sensor
located at coordinates (xh, yh). The location of sensor n ∈ {1, . . . , Nh} is at
(xh + ∆xhn, yh + ∆yhn), where (∆xhn,∆yhn) is the relative location with
respect to the reference sensor. If c is the speed of propagation, then the
propagation time from the source to the reference sensor on array h is

τh =
dh

c
=

1
c

[
(xs − xh)2 + (ys − yh)2

]1/2
, (1)

where dh is the distance from the source to array h. We model the wave-
fronts over individual array apertures as perfectly coherent plane waves.
Then in the far-field approximation, the propagation time from the source
to sensor n on array h is expressed by τh + τhn, where

τhn ≈ −1
c

[
xs − xh

dh
∆xhn +

ys − yh

dh
∆yhn

]
= −1

c
[(cos φh)∆xhn + (sinφh)∆yhn] (2)

is the propagation time from the reference sensor on array h to sensor n on
array h, and φh is the bearing of the source with respect to array h. Note that
while the far-field approximation (2) is reasonable over individual array
apertures, the wavefront curvature that is inherent in (1) must be retained
in order to model wide separations between arrays.

The time signal received at sensor n on array h due to the source will
be represented as sh(t − τh − τhn), where the vector of signals s(t) =
[s1(t), . . . , sH(t)]T received at the H arrays are modeled as real-valued,
continuous-time, zero-mean, jointly wide-sense stationary, Gaussian ran-
dom processes with −∞ < t < ∞. These processes are fully specified by
the H × H cross-correlation function matrix

Rs(τ) = E{s(t + τ) s(t)T }, (3)

Figure 1. Geometry of
nonmoving source
location and an array of
arrays. A communi-
cation link is available
between each array and
the fusion center.

Source
(x_s, y_s)

x

y

Array 1

Array H

(x_1, y_1)

Array 2
(x_2, y_2)

(x_H, y_H)

Fusion
Center
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where E denotes expectation, superscript T denotes transpose, and we will
later use the notation superscript ∗ and superscript H to denote complex
conjugate and conjugate transpose, respectively. The (g, h) element in (3) is
the cross-correlation function

rs,gh(τ) = E{sg(t + τ) sh(t)} (4)

between the signals received at arrays g and h. The correlation functions (3)
and (4) are equivalently characterized by their Fourier transforms, which
are the cross-spectral density functions

Gs,gh(ω) = F{rs,gh(τ)} =
∫ ∞

−∞
rs,gh(τ) exp(−jωτ) dτ (5)

and the associated cross-spectral density matrix

Gs(ω) = F{Rs(τ)}. (6)

The diagonal elements Gs,hh(ω) of (6) are the power spectral density (PSD)
functions of the signals sh(t), and hence they describe the distribution of
average signal power with frequency. The model allows the PSD to vary
from one array to another to reflect propagation differences and source as-
pect angle differences.

The off-diagonal elements of (6), Gs,gh(ω), are the cross-spectral density
(CSD) functions for the signals sg(t) and sh(t) received at distinct arrays
g �= h. In general, the CSD functions have the form

Gs,gh(ω) = γs,gh(ω) [Gs,gg(ω)Gs,hh(ω)]1/2 , (7)

where γs,gh(ω) is the spectral coherence function for the signals, which has
the property 0 ≤ |γs,gh(ω)| ≤ 1. Coherence magnitude |γs,gh(ω)| = 1 corre-
sponds to perfect correlation between the signals at sensors g and h, while
the partially coherent case |γs,gh(ω)| < 1 models random effects in the prop-
agation paths from the source to sensors g and h. Note that our assumption
of perfect spatial coherence across individual arrays implies that the ran-
dom propagation effects have negligible impact on the intra-array delays
τhn in (2) and the bearings φ1, . . . φH .

The signal received at sensor n on array h is modelled as a sum of the
delayed source signal and noise,

zhn(t) = sh(t − τh − τhn) + whn(t), (8)

where the noise signals whn(t) are modeled as real-valued, continuous-
time, zero-mean, jointly wide-sense stationary, Gaussian random processes
that are mutually uncorrelated at distinct sensors, and are uncorrelated
from the signals. That is, the noise correlation properties are

E{wgm(t + τ)whn(t)} = rw(τ) δghδmn (9)

and
E{wgm(t + τ)sh(t)} = 0, (10)
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where rw(τ) is the noise autocorrelation function, and the noise PSD is
Gw(ω) = F{rw(τ)}. We then collect the observations at each array h into
Nh × 1 vectors zh(t) = [zh1(t), . . . , zh,Nh

(t)]T for h = 1, . . . , H , and we fur-
ther collect the observations from the H arrays into a (N1 + · · · + NH) × 1
vector

Z(t) =







z1(t)
...

zH(t)





 . (11)

The elements of Z(t) in (11) are zero-mean, jointly wide-sense stationary,
Gaussian random processes. We can express the CSD matrix of Z(t) in a
convenient form with the following definitions. The array manifold for ar-
ray h at frequency ω is

ah(ω) =







exp(−jωτh1)
...

exp(−jωτh,Nh
)





 =







exp
[
j ω

c ((cos φh)∆xh1 + (sinφh)∆yh1)
]

...

exp
[
j ω

c ((cos φh)∆xh,Nh
+ (sinφh)∆yh,Nh

)
]





 , (12)

using τhn from (2) and assuming that the sensors have omnidirectional re-
sponse to sources in the plane of the array. Let us define the relative TD of
the signal at arrays g and h as

Dgh = τg − τh, (13)

where τh is defined in (1). Then the cross-spectral density matrix of Z(t) in
(11) has the form

GZ(ω) =
(14)





a1(ω)a1(ω)HGs,11(ω) · · · a1(ω)aH(ω)H exp(−jωD1H)Gs,1H(ω)
...

. . .
...

aH(ω)a1(ω)H exp(+jωD1H)Gs,1H(ω)∗ · · · aH(ω)aH(ω)HGs,HH(ω)





 + Gw(ω)I.

The source CSD functions Gs,gh(ω) in (14) can be expressed in terms of the
signal spectral coherence γs,gh(ω) using (7). Note that (14) depends on the
source location parameters (xs, ys) through the bearings φh in ah(ω) and
the pairwise TD differences Dgh.

2.1 Cramér-Rao Bound (CRB)

The CRB provides a lower bound on the variance of any unbiased es-
timator. The problem of interest is estimation of the source location pa-
rameter vector Θ = [xs, ys]T using T samples of the sensor signals
Z(0),Z(Ts), . . . ,Z((T − 1) · Ts), where Ts is the sampling period. The total
observation time is T = T ·Ts. Let us denote the sampling rate by fs = 1/Ts

and ωs = 2πfs. We will assume that the continuous-time random processes
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Z(t) are band-limited, and that the sampling rate fs is greater than twice
the bandwidth of the processes. Then Friedlander and Whittle [12, 13] have
shown that the Fisher information matrix (FIM) J for the parameters Θ
based on the samples Z(0),Z(Ts), . . . ,Z((T − 1) · Ts) has elements

Jij =
T
4π

∫ ωs

0
tr

{
∂ GZ(ω)

∂ θi
GZ(ω)−1 ∂ GZ(ω)

∂ θj
GZ(ω)−1

}
dω, i, j = 1, 2, (15)

where “tr” denotes the trace of the matrix. The CRB matrix C = J−1 then
has the property that the covariance matrix of any unbiased estimator Θ̂
satisfies Cov(Θ̂) − C ≥ 0, where ≥ 0 means that Cov(Θ̂) − C is positive
semidefinite [14]. Equation (15) provides a convenient way to compute the
FIM for the array of arrays model as a function of the signal coherence be-
tween distributed arrays, the signal and noise bandwidth and power spec-
tra, and the sensor placement geometry. The CRB is evaluated for various
scenarios in our previous work [6], and additional examples are presented
in section 2.2.1 of this report.

Let us consider the CRB for an acoustic source that has a narrowband power
spectrum, i.e., the PSD Gs,hh(ω) of the signal at each array h = 1, . . . , H
is nonzero only in a narrow band of frequencies ω0 − (∆ω/2) ≤ ω ≤
ω0 + (∆ω/2). If the bandwidth ∆ω is chosen small enough so that the ω-
dependent quantities in (15) are well approximated by their value at ω0,
then the narrowband approximation to the FIM (15) is

Jij ≈
T∆ω

ωs
tr

{
∂ GZ(ω0)

∂ θi
GZ(ω0)−1 ∂ GZ(ω0)

∂ θj
GZ(ω0)−1

}
. (16)

The quantity T∆ω
ωs

multiplying the FIM in (16) is the time-bandwidth prod-
uct of the observations. In narrowband array processing, the T time sam-
ples per sensor are often segmented into M blocks containing T/M sample
each. Then the discrete Fourier transform (DFT) is applied to each block,
and the complex coefficients at frequency ω0 (at each sensor) are used to
form M array “snapshots.” In this case, the quantity T∆ω

ωs
is approximately

equal to M , the number of snapshots.

2.2 Examples

Next, we present numerical examples that evaluate the CRB on localization
accuracy in (15) for a narrowband and a wideband source. We also show
measured aeroacoustic data from a ground vehicle and evaluate the spec-
tral coherence of the source at widely separated sensors.

2.2.1 CRB Evaluation

In our previous work [6], we developed CRBs on localization accuracy for
the following three schemes.

1. Each array estimates the source bearing and transmits the bearing es-
timate to the fusion center. The fusion processor then triangulates the
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bearings to estimate the source location. This approach does not ex-
ploit wavefront coherence between the distributed arrays, but it does
minimize the communication bandwidth required to transmit data
from the arrays to the fusion center.

2. The raw data from all sensors is jointly processed to estimate the
source location. This is the optimum approach and it fully utilizes the
coherence between distributed arrays. However, it requires a large
communication bandwidth, since the data from all of the sensors must
be transmitted to the fusion center.

3. Combination of methods 1 and 2: The objective is to perform some
processing at the individual arrays to reduce the communication band-
width requirement while still exploiting the coherence between dis-
tributed arrays. Each array estimates the source bearing and trans-
mits the bearing estimate to the fusion center. In addition, the raw
data from one sensor in each array is transmitted to the fusion cen-
ter. The fusion center then estimates the propagation time delay be-
tween pairs of distributed arrays, and triangulates these time delay
estimates with the bearing estimates to localize the source.

The first scheme is “incoherent triangulation” of the bearing estimates, and
it is obtained from the CRB in (15) by setting the coherence parameters to
zero, γgh = 0, in (7) and (14). The second scheme is obtained from the CRB
in (15) with nonzero coherence, γgh, and the CRB for the third scheme is
described in [6]. Our objective in this section is to evaluate these CRBs for
a narrowband source and a wideband source. We will refer back to these
examples in section 3 after developing the threshold coherence analysis for
TDE. The analysis in section 3 will show that the CRBs for the narrowband
source case are unachievable when there is any loss of signal coherence be-
tween arrays, while the CRBs for the wideband source case are achievable
when moderate coherence losses occur.

Consider H = 3 identical arrays, each of which contains N1 = · · · = NH =
7 sensors. Each array is circular with 4-ft radius, with six sensors equally
spaced around the perimeter and one sensor in the center. We first evalu-
ate the CRB for a narrowband source with a 1-Hz bandwidth centered at
50 Hz and SNR = 10 dB at each sensor. That is, Gs,hh(ω)/Gw(ω) = 10 for
h = 1, . . . , H and 2π(49.5) < ω < 2π(50.5) rad/s. The signal coherence
γs,gh(ω) = γs(ω) is varied between 0 and 1. We assume that T = 4000 time
samples are obtained at each sensor with sampling rate fs = 2000 sam-
ples/s. The source localization performance is evaluated by computing the
ellipse in (x, y) coordinates that satisfies the expression

[
x y

]
J

[
x

y

]

= 1, (17)

where J is the FIM in (15). If the errors in (x, y) localization are jointly Gaus-
sian distributed, then the ellipse (17) represents the contour at one stan-
dard deviation in root-mean-square (RMS) error. The error ellipse for any
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unbiased estimator of source location cannot be smaller than this ellipse
derived from the FIM.

The H = 3 arrays are located at coordinates (x1, y1) = (0, 0), (x2, y2) =
(400, 400), and (x3, y3) = (100, 0). One source located at (xs, ys) = (200, 300),
where the units are meters, as illustrated in Figure 2a. The RMS error el-
lipses for joint processing of all sensor data for coherence values γs(ω) =
0, 0.5, and 1 are also shown in Figure 2a. The coherence between all pairs
of arrays is assumed to be identical, i.e., γs,gh(ω) = γs(ω) for (g, h) =
(1, 2), (1, 3), (2, 3). The largest ellipse in Figure 2a corresponds to incoherent
signals γs(ω) = 0 and characterizes the performance of the simple method
of triangulation using the bearing estimates from the three arrays. Figure 2b
shows the ellipse radius for various values of the signal coherence γs(ω).
The ellipses for γs(ω) = 0.5 and 1 are difficult to see in Figure 2a because
they fall on the lines of the × that marks the source location, illustrating
that signal coherence between the arrays significantly improves the CRB
on source localization accuracy. Note also that for this scenario, the local-
ization scheme based on bearing estimation with each array and TDE using
one sensor from each array performs equivalently to the optimum joint pro-
cessing scheme. Figure 2c shows a closer view of the error ellipses for the
scheme of bearing estimation plus TDE with one sensor from each array.
The ellipses are identical to those in Figure 2a for joint processing.

Figure 2. RMS source
localization error
ellipses based on the
CRB for H = 3 arrays
and one narrowband
source. The array and
source locations are
shown in (a), along with
the error ellipses for
joint processing of all
sensor data for
coherence values
γs(ω) = 0, 0.5, and 1.
Part (b) shows the error
ellipse radius (major
axis2 + minor axis2)1/2

for a range of coherence
values, comparing joint
processing with the
reduced-complexity
scheme of bearing
estimation plus TDE
using data from one
sensor per array. Part
(c) is a closer view of the
RMS error ellipses for
the bearing plus TDE
scheme.
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Figure 3 presents corresponding results for a wideband source with band-
width 20 Hz centered at 50 Hz and SNR 16 dB. That is, Gs,hh/Gw = 40
for 2π(40) < ω < 2π(60) rad/s, h = 1, . . . , H . T = 2000 time samples are
obtained at each sensor with sampling rate fs = 2000 samples/s, so the
observation time is 1 s. As in the narrowband case in Figure 2, Figure 3
shows that joint processing reduces the CRB compared with bearings-only
triangulation, and bearing plus TD estimation is nearly optimum.

The CRB provides a lower bound on the variance of unbiased estimates,
so an important question is whether an estimator can achieve the CRB. We
show in section 3 that the coherent processing CRBs for the narrowband
scenario illustrated in Figure 2 are achievable only when the coherence is
perfect, i.e., γs = 1. Therefore for that scenario, bearings-only triangulation
is optimum in the presence of even small coherence losses. However, for the
wideband scenario illustrated in Figure 2, the coherent processing CRBs are
achievable for coherence values γs > 0.75, so the wideband source provides
tolerance to moderate values of coherence loss.

2.2.2 Coherence in Measured Data

Next, we present results from measured aeroacoustic data to illustrate typi-
cal values of signal coherence at distributed arrays. The experimental setup
is illustrated in Figure 4a, which shows the path of a moving ground vehi-
cle and the locations of four microphone arrays (labeled 1, 3, 4, 5). Each
array is circular with N = 7 sensors, 4-ft radius, and six sensors equally

Figure 3. RMS source
localization error
ellipses based on the
CRB for H = 3 arrays
and one wideband
source. The array and
source locations are
shown in (a), along with
the error ellipses for
joint processing of all
sensor data for
coherence values
γs(ω) = 0, 0.5, and 1.
Part (b) shows the error
ellipse radius,
comparing joint
processing with the
reduced-complexity
scheme of bearing
estimation plus TDE
using data from one
sensor per array. Part
(c) is a closer view of the
RMS error ellipses for
the bearing plus TDE
scheme.
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spaced around the perimeter with one sensor in the center. We focus on the
10-s segment indicated by the ♦’s in Figure 4a (which correspond to the
time segment 340–350 s in the data). Figure 4b shows the power spectral
density (PSD) of the data measured at arrays 1 and 3 during the 10-s seg-
ment. Note the dominant harmonic at 39 Hz. Figure 4c shows the estimated
coherence between arrays 1 and 3 during the 10-s segment. The coherence
is approximately 0.85 at 40 Hz, which demonstrates the presence of sig-
nificant coherence at widely separated microphones. Figure 4c shows the
estimated coherence between two sensors on array 1, spaced by 8 ft. Note
that the coherence is close to unity for frequencies in the range from about
40 to 200 Hz, so our model of perfect signal coherence over individual ar-
rays seems reasonable.

Figure 4. (a) Path of
ground vehicle and
array locations for
measured data.
(b) Mean PSD at arrays
1 and 3 estimated from
measured data over the
10-s segment ♦ in (b).
Top panel is Gs,11(f),
bottom panel is
Gs,33(f). (c) Mean
spectral coherence
γs,13(f) between arrays
1 and 3 estimated over
the 10-s segment.
(d) Mean spectral
coherence for two
sensors on array 1, with
sensor spacing 8 ft.
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The Doppler effect due to source motion was compensated prior to the co-
herence estimate shown in Figure 4c. Without Doppler compensation, the
coherence is significantly reduced, as shown in Figure 5a. The time-varying
radial velocity of the source with respect to each array in Figure 4a is plot-
ted in the top panel of Figure 5b. If s(t) is the waveform emitted by the
source that is moving with radial velocity v with respect to the sensor, then
the sensor receives a waveform with the form s(αt), where the scaling fac-
tor α is

α = 1 − v

c
(18)

and c is the speed of wave propagation. The scaling factor α is plotted in
the bottom panel of Figure 5b. Note that for this data set, 0.98 < α < 1.02,
which corresponds to a Doppler frequency shift of approximately ±1 Hz
for an emitted tone at 50 Hz. We use a digital resampling algorithm to com-
pensate for the Doppler effect.

Figure 5. (a) Mean
short-time spectral
coherence between
arrays 1 and 3 if
Doppler is not
compensated. (b) Radial
velocity and Doppler
scaling factor α in (18)
for source in Figure 4a
with respect to each
array.
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3. Time Delay Estimation (TDE)

The CRB results presented in section 2.2.1 indicate that TDE between widely
spaced sensors is an effective way to improve the source localization ac-
curacy with joint processing. Fundamental performance limits for passive
time delay and Doppler estimation have been studied extensively for sev-
eral decades (e.g., see the collection of papers edited by Carter [15]). The
fundamental limits are usually parameterized in terms of the SNR at each
sensor, the spectral support of the signals (fractional bandwidth), and the
time-bandwidth product of the observations. We are particularly interested
in the application of aeroacoustic tracking of ground vehicles using an ar-
ray of microphone arrays. The coherence between the signals is known to
degrade with increased spatial separation between the signals [7, 8] due to
random motion of the air. This coherence loss significantly affects the time
delay and Doppler estimation accuracy.

In order to quantify the effect of partial signal coherence on TD and
Doppler estimation, we present Cramér-Rao and Ziv-Zakai bounds that are
explicitly parameterized by the signal coherence, along with the traditional
parameters of SNR, fractional bandwidth, and time-bandwidth product.
The basic result is that for a given SNR, fractional bandwidth, and time-
bandwidth product, there exists a “threshold coherence” value that must
be exceeded in order for TDE to achieve the CRB. The analysis is based on
Ziv-Zakai bounds for TDE, as in Weiss and Weinstein [9, 10].

Let us parameterize the model in (14) by the bearings φh and the time-delay
differences Dgh, and consider first the case of H = 2 sensors. Figure 6 con-
tains an illustration of the TDE problem, with the differential TD defined
as D = D21. It follows from (14) that the CSD matrix of the sensor data in
Figure 6 is

CSD

[
z1(t)

z2(t)

]

= GZ(ω) = (19)

[
Gs,11(ω) + Gw(ω) e+jωDγs,12(ω) [Gs,11(ω)Gs,22(ω)]1/2

e−jωDγs,12(ω)∗ [Gs,11(ω)Gs,22(ω)]1/2 Gs,22(ω) + Gw(ω)

]

.

Figure 6. TDE problem
for a nonmoving source
with H = 2 sensors.

Source Sensor 1

z1(t) = s1(t) + w1(t)

z2(t) = s2(t - D) + w2(t)

Sensor 2

Additive noise at sensor
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The signal coherence function γs,12(ω) describes the degree of correlation
that remains in the signal emitted by the source at each frequency ω af-
ter propagating to sensors 1 and 2. Next, we develop an SNR-like expres-
sion for the two-sensor case that appears in all subsequent expressions
for fundamental limits on TD and Doppler estimation. We begin with the
magnitude-squared coherence (MSC) [15] of the observed signals z1(t), z2(t)
as a function of the signal coherence magnitude, |γs,12(ω)|, and other spec-
tral density parameters:

MSCz (|γs,12(ω)|) =
|CSD[z1(t), z2(t)]|2

PSD[z1(t)] · PSD[z2(t)]
=

|γs,12(ω)|2 Gs,11(ω)Gs,22(ω)
[Gs,11(ω) + Gw(ω)] [Gs,22(ω) + Gw(ω)]

=
|γs,12(ω)|2

[
1 +

(
Gs,11(ω)
Gw(ω)

)−1
] [

1 +
(

Gs,22(ω)
Gw(ω)

)−1
] ≤ 1 . (20)

Then the following “SNR” expression appears in subsequent performance
bounds:

SNR (|γs,12(ω)|) =
MSCz (|γs,12(ω)|)

1 − MSCz (|γs,12(ω)|) (21)

=

{
1

|γs,12(ω)|2

[

1 +
(

Gs,11(ω)
Gw(ω)

)−1
] [

1 +
(

Gs,22(ω)
Gw(ω)

)−1
]

− 1

}−1

(22)

≤ |γs,12(ω)|2

1 − |γs,12(ω)|2
. (23)

The inequality (23) shows that signal coherence loss (|γs,12(ω)| < 1) severely
limits the “SNR” quantity that characterizes performance, even if the SNR
per sensor Gs,ii(ω)/Gw(ω) is very large.

3.1 Bounds for TDE

We can use (19) in (15) to find the CRB for TDE with H = 2 sensors, yielding

CRB(D) =
4π

T

[∫ ωs

0
ω2 SNR (|γs,12(ω)|) dω

]−1

, (24)

where T is the total observation time of the sensor data and SNR (|γs,12(ω)|)
is defined in (22). Let us consider the case in which the signal PSDs, the
noise PSD, and the coherence are flat (constant) over a bandwidth ∆ω rad/s
centered at ω0 rad/s. If we omit the frequency dependence of Gs,11, Gs,22, Gw,
and γs,12, then the integral in (24) may be evaluated to yield the following
CRB expression:
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CRB(D) =
1

2ω2
0

(
∆ω T

2π

)
[
1 + 1

12

(
∆ω
ω0

)2
]

SNR (|γs,12|)
(25)

=
1

2ω2
0

(
∆ω T

2π

)
[
1 + 1

12

(
∆ω
ω0

)2
]

{
1

|γs,12|2

[

1 +
(

Gs,11

Gw

)−1
] [

1 +
(

Gs,22

Gw

)−1
]

− 1

}

>
1

2ω2
0

(
∆ω T

2π

)
[
1 + 1

12

(
∆ω
ω0

)2
]

[
1

|γs,12|2
− 1

]
. (26)

The quantity
(

∆ω·T
2π

)
is the time-bandwidth product of the observations,(

∆ω
ω0

)
is the fractional bandwidth of the signal, and Gs,hh/Gw is the SNR

at sensor h. Note from the high-SNR limit in (26) that when the signals are
partially coherent |γs,12| < 1, increased source power does not reduce the
CRB. Improved TDE accuracy is obtained with partially coherent signals by
increasing the observation time T or changing the spectral support of the
signal, which is [ω0−∆ω/2, ω0+∆ω/2]. The spectral support of the signal is
not controllable in passive TDE applications, so increased observation time
is the only means for improving the TDE accuracy with partially coherent
signals. Source motion becomes more important during long observation
times, and in section 5 we extend the model to include source motion.

The CRB in (25) agrees with known results for perfectly coherent signals
[15] and with results from the medical ultrasound literature [16, 17] for
partially correlated speckle signals. The medical ultrasound application is
distinguished from the aeroacoustic tracking of ground vehicles in that the
former is typically an active system while the latter is passive. The medical
ultrasound application therefore allows much more control over the SNR
and bandwidth of the signals. In passive aeroacoustics, the received signals
are emitted by a vehicle and are not controllable for the purposes of TD
estimation.

With perfectly coherent signals, it is well known that the CRB on TDE is
achievable only when the SNR expression in (22) (with |γs,12(ω)| = 1) ex-
ceeds a threshold [9, 10]. Next we show that for TDE with partially coherent
signals, a similar threshold phenomenon occurs with respect to coherence.
That is, the coherence must exceed a threshold in order to achieve the CRB
(24) on TDE. We state the threshold coherence formula for the following
simplified scenario. The signal and noise spectra are flat over a bandwidth
of ∆ω rad/s centered at ω0 rad/s, and the observation time is T seconds.
Further, assume that the signal PSDs are identical at each sensor, and define
the following constants for notational simplicity:

Gs,11(ω0) = Gs,22(ω0) = Gs, Gw(ω0) = Gw, and γs,12(ω0) = γs. (27)
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Then the SNR expression in (22) has the form

SNR(|γs|) =

[
1

|γs|2
(

1 +
1

(Gs/Gw)

)2

− 1

]−1

. (28)

The Ziv-Zakai bound developed by Weiss and Weinstein [9, 10] shows that
the threshold SNR for CRB attainability is a function of the time-bandwidth

product
(

∆ω·T
2π

)
and the fractional bandwidth

(
∆ω
ω0

)
,

SNRthresh =
6

π2
(

∆ωT
2π

)
( ω0

∆ω

)2
[

ϕ−1

(
1
24

(
∆ω

ω0

)2
)]2

, (29)

where ϕ(y) = 1/
√

2π
∫ ∞
y exp(−t2/2) dt. It follows that the threshold coher-

ence value is

|γs|2 ≥

(
1 + 1

(Gs/Gw)

)2

1 + 1
SNRthresh

, so |γs|2 ≥ 1
1 + 1

SNRthresh

as
Gs

Gw
→ ∞. (30)

For a specific TDE scenario, the threshold SNR for CRB attainability is
given by (29), and (30) provides a corresponding threshold coherence. Since
|γs|2 ≤ 1, (30) is useful only if Gs/Gw > SNRthresh.

Figure 7 contains a plot of (30) for a particular case in which the signals are
in a band centered at ω0 = 2π50 rad/s and the time duration is T = 2 s.
Figure 7 shows the variation in threshold coherence as a function of sig-
nal bandwidth, ∆ω. Note that nearly perfect coherence is required when
the signal bandwidth is less than 5 Hz (or 10% fractional bandwidth). The
threshold coherence drops sharply for values of signal bandwidth greater
than 10 Hz (20% fractional bandwidth). Thus for sufficiently wideband sig-
nals, e.g., ∆ω ≥ 2π10 rad/s, a certain amount of coherence loss can be
tolerated while still allowing unambiguous TDE.

Figures 8a–c contain plots of the threshold coherence in (30) as a function
of the time-bandwidth product

(
∆ω·T

2π

)
, SNR Gs

Gw
, and fractional bandwidth(

∆ω
ω0

)
. Note that Gs

Gw
= 10 dB is nearly equivalent to Gs

Gw
→ ∞. We note

that very large time-bandwidth product is required to overcome coherence
loss when the fractional bandwidth is small at 0.1. The variation of thresh-
old coherence with fractional bandwidth is illustrated in Figure 8d. For a
fixed threshold coherence value, such as 0.7, each doubling of the fractional
bandwidth reduces the required time-bandwidth product by about a factor
of 10.

Let us examine a narrowband signal scenario that is typical in aeroacous-
tics, with center frequency f0 = ω0/(2π) = 50 Hz and bandwidth ∆f =
∆ω/(2π) = 5 Hz, so the fractional bandwidth is ∆f/f0 = 0.1. From Fig-
ure 8a, signal coherence |γs| = 0.8 requires time-bandwidth product ∆f ·
T > 200, so the necessary time duration T = 40 s for TDE may be imprac-
tical for moving sources.
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Figure 7. Threshold
coherence vs.
bandwidth based on
(30) for ω0 = 2π50 rad/s
and Gs/Gw = 0, 10, and
∞ dB.
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Larger time-bandwidth products of the observed signals are required in
order to make TDE feasible in environments with signal coherence loss. As
discussed previously, only the observation time is controllable in passive
applications, thus leading us to consider source motion models in section 5
for use during long observation intervals.
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We can evaluate the threshold coherence for the narrowband and wideband
scenarios considered in section 2.2.1 for the CRB examples. The results are
as follows, using (29) and (30):

• Narrowband case: Gs/Gw = 10, ω0 = 2π50 rad/s, ∆ω = 2π rad/s,
T = 2 s
=⇒ Threshold coherence ≈ 1.

• Wideband case: Gs/Gw = 40, ω0 = 2π50 rad/s, ∆ω = 2π · 20 rad/s,
T = 1 s
=⇒ Threshold coherence ≈ 0.75.

Therefore, for the narrowband case, joint processing of the data from dif-
ferent arrays will not achieve the CRBs in Figure 2 when there is any loss in
signal coherence. For the wideband case, joint processing can achieve the
CRBs in Figure 3 for coherence values that exceed 0.75.

The remainder of this section continues to focus on nonmoving sources,
with a simulation example presented in section 3.2 that verifies the CRB
and threshold coherence values for TDE. In section 3.3, the H = 2 sensor
case of this subsection is extended to TDE with H > 2 sensors. Section 3.4
contains examples of TDE with measured aeroacoustic data.

3.2 TDE Simulation Examples

Consider TDE at H = 2 sensors with varying signal coherence γs. Our first
simulation example involves a signal with reasonably wide bandwidth,
∆f = 30 Hz centered at f0 = 100 Hz, so the fractional bandwidth ∆f/f0 =
0.3. The signal, noise, and coherence are flat over the frequency band, with
SNR Gs/Gw = 100 (20 dB). The signals and noise are band-pass Gaussian
random processes. The sampling rate in the simulation is fs = 104 sam-
ples/s, with T = 3 × 104 samples, so the time interval length is T = 3 s.

Figure 9a displays the simulated RMS error on TDE for 0.2 ≤ γs ≤ 1.0,
along with the corresponding CRB from (25). The simulated RMS error is
based on 100 runs, and the TDE is estimated from the location of the maxi-
mum of the cross correlation of the sensor signals. The threshold coherence
for this case is 0.41, from (30) and (29). Note in Figure 9a that the simu-
lated RMS error on TDE diverges sharply from the CRB very near to the
threshold coherence value of 0.41, illustrating the accuracy of the analytical
threshold coherence in (30).

Next we consider TDE with three different signals:

• A narrowband signal with ∆f = 2 Hz centered at f0 = 40 Hz. We
refer to this as “1 harmonic” (it is the fundamental frequency of the
signals defined next).
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Figure 9. Comparison of
simulated RMS error for
TDE with CRBs and
threshold coherence
value. (a) Wideband
signal with ∆f = 30 Hz
centered at f0 = 100 Hz.
(b–d) Narrowband
signal with ∆f = 2 Hz,
fundamental frequency
f0 = 40 Hz and 1, 2, and
5 harmonic
components,
respectively.
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• “2 harmonics” at 40 and 80 Hz, with bandwidth ∆f = 2 Hz at each
harmonic.

• “5 harmonics” at 40, 80, 120, 160, 200 Hz, with bandwidth ∆f = 2 Hz
at each harmonic.

The signal, noise, and coherence are flat over each frequency band, with
SNR Gs/Gw = 100 (20 dB), and the signals and noise are band-pass Gaus-
sian random processes. The sampling rate in the simulation is fs = 104

samples/s, with T = 2×104 samples, so the time interval length is T = 2 s.

Figures 9b–d display the simulated RMS error on TDE (based on 1000 runs)
for coherence values 0.7 ≤ γs ≤ 1.0. As in the previous example, the TDE is
obtained by cross correlation. The threshold coherence is defined only for
the “1 harmonic” signal, and the threshold coherence value is ≈ 1. Figure 9b
illustrates the divergence of the simulated RMS error from the CRB, except
at γs = 1.

Figures 9c and d display the results for the signals with “2 harmonics” and
“5 harmonics.” The additional harmonics enable accurate TDE for lower
coherence values, but we cannot use (30) to compute the analytical thresh-
old coherence for the harmonic signals. The “approximate threshold coher-
ence” values indicated in Figures 9c and d are computed as follows. For the
K harmonics, suppose the total bandwidth of all harmonics, ∆f = K · 2 Hz,
is centered at the fundamental frequency f0 = 40 Hz. The approximate
threshold coherence values, 0.95 in Figure 9c and 0.50 in Figure 9d, are
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considerably lower than the actual points of divergence from the CRB. Not
surprisingly, the total bandwidth that is “spread” across the harmonics is
less useful for overcoming signal coherence loss than an equivalent band-
width concentrated at the fundamental f0 = 40 Hz. Narrowband and har-
monic signals are generally difficult for TDE due to ambiguous peaks in
the cross-correlation function.

3.3 TDE With H > 2 Sensors

We can extend the analysis of the H = 2 sensor case to TDE with H > 2
sensors following the approach of Weinstein [18], leading to the conclusion
that pairwise TDE is essentially optimum for cases of interest with reason-
able signal coherence between sensors. By pairwise TDE we mean that one
sensor, say H , is identified as the reference, and only the H − 1 time differ-
ences D1H , D2H , . . . , DH−1,H are estimated. Under the conditions described
next, these H − 1 estimates are nearly as accurate for source localization as
forming all pairs of TDEs Dgh for all g < h. Weinstein’s analysis [18] is valid
for moving as well as nonmoving sources.

Extending (27) and (28) to H > 2 sensors, let us assume equal Gs,hh/Gw at
all sensors h = 1, . . . , H and equal coherence γs between all sensor pairs,
so that the SNR(|γs|) in (28) is equal for all sensor pairs. Then as long as
H · SNR(|γs|) � 1, improves the source localization variance relative to
pairwise processing by the factor

V =
H

(
1 + 2 · γs

1−γs

)

2
(
1 + H · γs

1−γs

) . (31)

Clearly V → 1 as γs → 1, and V < (3H)/[2(1 + H)] < 1.5 for γs > 0.5.
Therefore the potential accuracy gain from processing all sensor pairs is
negligible when the coherence exceeds the threshold values that are typi-
cally required for TDE.

This result suggests strategies with moderate communication bandwidth
that potentially achieve nearly optimum localization performance. The ref-
erence sensor, H , sends its raw data to all other sensors. Those sensors
h = 1, . . . , H − 1, locally estimate the time differences D1,H , . . . , DH−1,H ,
and these estimates are passed to the fusion center for localization pro-
cessing with the bearing estimates φ1, . . . , φH . A modified scheme with
more communication bandwidth but more centralized processing is for all
H sensors to communicate their data to the fusion center, with TDE per-
formed at the fusion center.

3.4 TDE With Measured Data

First, we present an illustration based on processing the measured data for
the source in Figure 4a that was discussed in section 2.2.2. Figure 10 shows
results of cross-correlation processing of the data for a 2-s segment at time
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Figure 10. (a) Cross
correlation of signals at
arrays 1 and 3 in Figure
4a for source at time
342 s. (b) Cross
correlation of signals at
two sensors on array 1,
separated by 8 ft.
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342 s. Figure 10a is obtained by cross-correlating the signals received at ar-
rays 1 and 3, for which the coherence is appreciable only over a narrow
band near 39 Hz (see Figure 4c). A peak in the cross correlation is not evi-
dent, which is expected based on the preceding analysis, since nearly perfect
coherence is needed for narrowband time delay estimation in this scenario.
Figure 10b is obtained by cross correlating the signals received at two sen-
sors on array 1, where the coherence is large over a wide bandwidth (see
Figure 4d). The peak is clearly evident in the cross correlation in Figure 10b.

Next, we present a TDE example based on measured data from Sanders
Corporation [19] using a synthetically generated, nonmoving, wideband
acoustic source. The PSD of the source is shown in Figure 11, which in-

Figure 11. (a) Frequency
spectrum of wideband
signal. (b) Location of
nodes where
transmitters and
receivers are placed.
(c) PSD and coherence
for synthetically
generated wideband
source located at node 2
and measured at nodes
0 and 1. (d) Generalized
cross correlation of 1-s
segments from node 0
with a 10-s segment
from node 1. The data is
time-aligned so the true
peak location is zero lag.
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dicates that the source bandwidth is about 50 Hz with center frequency
100 Hz. With reference to the sensor locations in Figure 11b, the source is at
node 2 and the two receiving sensors are at nodes 0 and 1. The source and
sensors form a triangle, with dimensions as follows: the distance from the
source (node 2) to sensors 0 and 1 is 233 ft and 329 ft, respectively, and the
distance between sensors 0 and 1 is 233 ft. The PSD and coherence magni-
tude estimated from 1-s segments of data measured at sensors 0 and 1 is
shown in Figure 11. Note that the PSDs of the sensor signals do not have
their maxima at 100 Hz due to the acoustic propagation. However, the co-
herence magnitude is roughly 0.8 over a 50-Hz band centered at 100 Hz.

Figure 12 shows the threshold coherence computed with (29) and (30) for
the signal in Figure 11a that is centered at ω0/2π = 100 Hz and T = 1-s
observation time. For bandwidth ∆ω/2π = 50 Hz, the threshold coherence
in Figure 12 is approximately 0.5. The actual coherence of 0.8 in Figure 11c
exceeds the threshold value, so TDE between sensors 0 and 1 should be
feasible. Figure 11d shows that the generalized cross correlation has its peak
at zero lag, which is the correct location because the sensor data is time-
aligned before processing. This example shows the feasibility of TDE with
acoustic signals measured at widely separated sensors, provided that the
SNR, fractional bandwidth, time-bandwidth product, and coherence meet
the required thresholds.

Figure 12. Threshold
coherence for synthetic
wideband source with
PSD in Figure 11a,
which has center
frequency ω0 = 2π100
rad/s and observation
time is T = 1 s.
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Figure 13 contains another example from the Sanders data using the sen-
sor locations in Figure 11b and the wideband source with spectrum in Fig-
ure 11a. In this example, the source is at node 0, and the receiving sensors
are at nodes 1 and 3. Note the difference in the PSD shapes in Figure 13a,
which is similar to our observation about the PSDs in Figure 11c. The signal
coherence between nodes 1 and 3 is shown in Figure 13b, indicating high
coherence over an appreciable bandwidth. The cross correlation is shown
in Figure 13, and the peak is clearly evident at the correct location.

Figure 14 contains a final example using the Sanders data in which the
source is at node 0 and measurements are recorded at nodes 1, 2, and 3
(see Figure 11b for the node locations). Differential TDs are estimated using
the signals measured at nodes 1, 2, and 3, and the TDs are hyperbolically
triangulated to estimate the location of the source. Figure 14a shows the hy-
perbolas obtained from the three differential TD estimates, and Figure 14b
shows an expanded view near the intersection point. The triangulated lo-
cation is within 1 ft of the true source location, which is at (−3.0) ft.

We conclude this section with an example based on measured data in an
open field. The source is an M1 tank that is moving at a range of approx-
imately 140 m from a set of H = 3 sensor arrays. The sensor arrays are
labeled A, B, and C, and they are located along a line with the following
separations:

B ← 15 m → A ← 8 m → C.

Figure 13. (a) PSDs at
nodes 1 and 3 when
transmitter is at node 0.
(b) Coherence between
nodes 1 and 3.
(c) Generalized cross
correlation between
nodes 1 and 3.
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Figure 14.
(a) Intersection of
hyperbolas obtained
from differential TDs
estimated at nodes 1, 2,
and 3 in Figure 11b.
(b) Expanded view of
part (a) near the point of
intersection.
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The source is moving parallel to the line connecting the three arrays. Fig-
ure 15 shows the PSDs at each array in (a), the signal coherence between
pairs of arrays in (b), and the cross correlations in (c). The PSDs in Fig-
ure 15a exhibit strong harmonics, perhaps due to tread slap. The coherence
in Figure 15b is high over a rather large bandwidth, so the cross-correlation
functions in Figure 15c have a clear peak at the correct location.

The examples presented in this section have demonstrated success and fail-
ure of time delay estimation, depending on the coherence and bandwidth
of the measured signals.

Figure 15. Results for
M1 tank moving at
range 140 m from three
arrays A, B, and C
separated by 8, 15, and
23 m. (a) Power spectral
densities. (b) Signal
coherence between
pairs of arrays. (c) Cross
correlations between
pairs of arrays.
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4. Subspace Processing

In this section, we begin with an eigenanalysis of the cross-spectral density
matrix (14) for the case of H = 2 arrays containing N1 = N2 = N sen-
sors operating in a narrow band of frequencies centered at ω0. This analysis
leads to a MUSIC-like subspace algorithm for source localization with dis-
tributed arrays and partial signal coherence. We illustrate with computer
simulations and measured aeroacoustic data that the new subspace algo-
rithm is limited in performance due to source location ambiguities that
arise from the large separation between arrays and the narrowband signals.
These ambiguities are identical to those that we studied with the Ziv-Zakai
bounds for TDE in section 3.1.

4.1 Eigenanalysis and Algorithm

To simplify notation, we will let ah represent the array manifold ah(ω0), σ2
h

represent the average signal power at array h in the frequency band of in-
terest, σ2

w is the average noise power, and γ is the coherence γs,12(ω0). We
allow γ to be complex-valued with |γ| ≤ 1. Then (14) can be expressed as
the correlation matrix

R(12) =

([
σ2

1 γσ1σ2

γ∗σ1σ2 σ2
2

]

⊗ 1N×N

)

◦
[

a1 aH
1 a1 aH

2 exp(−jω0D12)

a2 aH
1 exp(+jω0D12) a2 aH

2

]

+ σ2
wI,

(32)

where ⊗ denotes Kronecker product, ◦ denotes elementwise product, and
1N×N is an N × N matrix of 1’s. The superscript (12) in (32) indicates that
the quantity is the combined correlation matrix of all sensors in arrays 1
and 2. The correlation matrices for the individual arrays 1 and 2 are

R(h) = σ2
h ah aH

h + σ2
wI, h = 1, 2. (33)

It is well known that the individual array correlation matrices R(1) and
R(2) in (33) have a rank-1 signal subspace, and that the signal subspace
eigenvalue is

λ
(h)
1 = Nσ2

h + σ2
w, h = 1, 2, (34)

with corresponding eigenvector

e(h)
1 = ah, h = 1, 2. (35)

The remaining eigenvalues λ
(h)
n , n = 2, . . . , N are equal to σ2

w.

Now, we present the eigenanalysis of the combined correlation matrix R(12)

in (32). The derivation of these results is similar to the reasoning in the ap-
pendix of [20]. We assume that the arrays are labeled so that σ2

1 ≥ σ2
2 , and
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that the sensors are omnidirectional so that the array manifold elements are
of the form [ah]n = exp(−jω0τhn). The rank of the signal subspace compo-
nent of R(12) is at most two, and the two largest eigenvalues are

λ
(12)
1 =

N

2
(
σ2

1 + σ2
2

)




1 +

√√
√
√1 − (1 − |γ|2)

(
2

σ1
σ2

+ σ2
σ1

)2



 + σ2

w (36)

λ
(12)
2 =

N

2
(
σ2

1 + σ2
2

)




1 −

√√
√
√1 − (1 − |γ|2)

(
2

σ1
σ2

+ σ2
σ1

)2



 + σ2

w. (37)

The corresponding eigenvectors are

e(12)
1 =







1
2

(
σ1
σ2

− σ2
σ1

)


1 +

√

1 +
(

2|γ|
σ1
σ2

−σ2
σ1

)2


 a1

γ∗ exp(jω0D12) a2





 (38)

e(12)
2 =







−γ a1

1
2

(
σ1
σ2

− σ2
σ1

)


1 +

√

1 +
(

2|γ|
σ1
σ2

−σ2
σ1

)2


 exp(jω0D12) a2





 , (39)

provided σ1 �= σ2. Some observations are as follows.

• In the case that σ1 = σ2 = σs, (36)–(39) reduce to

λ
(12)
1 = Nσ2

s (1 + |γ| ) + σ2
w, λ

(12)
2 = Nσ2

s (1 − |γ| ) + σ2
w (40)

e(12)
1 =

[
a1

(γ∗/|γ|) exp(jω0D12) a2

]

, e(12)
2 =

[
− (γ/|γ|) a1

exp(jω0D12) a2

]

. (41)

Note that (41) is valid as long as γ �= 0, and in this case the eigen-
vectors are independent of the coherence magnitude. In the case of
high SNR so that σ2

w � Nσ2
s(1 − |γ|), the ratio of signal eigenvalues

is approximately
λ

(12)
1

λ
(12)
2

≈ 1 + 2
|γ|

1 − |γ| . (42)

From (42), in order for λ
(12)
1 > 10λ

(12)
2 so that λ

(12)
1 is the dominant

eigenvalue, the coherence must satisfy |γ| > 0.8181.

• In the case of perfect coherence |γ| = 1,R(12) has a rank-1 signal sub-
space, with signal eigenvalue and eigenvector

λ
(12,COH)
1 = N(σ2

1 + σ2
2) + σ2

w, e(12,COH)
1 =

[
σ1 a1

σ2γ
∗ exp(jω0D12)a2

]

. (43)
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The expressions in (43) are the natural extension of (34) and (35) ap-
plied to the “superarray” of all sensors, allowing for different signal
power levels at the two arrays.

• In the case of partial coherence |γ| < 1, R(12) has a rank-2 signal sub-
space. The signal eigenvalues are ordered λ

(12)
1 ≥ λ

(12)
2 , with equality

if and only if γ = 0 and σ1 = σ2. In the incoherent case γ = 0, the
signal eigenvectors are

e(12,INC)
1 =

[
a1

0

]

, e(12,INC)
2 =

[
0

a2

]

. (44)

Thus, in the incoherent case, the signal eigenvectors (44) of R(12) are
completely determined by the signal eigenvectors (35) of individual
array correlation matrices R(1) and R(2).

• Note that the span of the R(12) signal subspace eigenvectors in (38)
and (39) is equal to the span of the incoherent eigenvectors in (44).
Therefore, for |γ| < 1, the signal subspace of R(12) is spanned by the
signal subspace eigenvectors of the individual array correlation matri-
ces R(1) and R(2). It follows that R(12) and the block diagonal ma-

trix

[
R(1) 0

0 R(2)

]

have identical signal and noise subspaces. Thus a

subspace algorithm that exploits joint processing of the two arrays
must exploit the structure of the dominant signal subspace eigenvec-
tor e(12)

1 in (38).

The following subspace procedure may be used to estimate the source lo-
cation (xs, ys) using the correlation matrices R(1), R(2), and R(12).

1. Form the correlation matrices R(1) and R(2) using the observations
from the individual arrays. Estimate the noise power σ2

w from the
noise eigenvalues of R(1) and R(2). Then estimate the signal power
at each array using the largest eigenvalue of R(1) and R(2) with (34):

σ2
h =

1
N

(
λ

(h)
1 − σ2

w

)
, h = 1, 2. (45)

2. Form the joint correlation matrix R(12), and estimate the coherence
magnitude |γ| using the two largest eigenvalues λ

(12)
1 , λ

(12)
2 of R(12)

with (36) and (37):

|γ| =








1 −
1 −

(
λ
(12)
1 −λ

(12)
2

N(σ2
1+σ2

2)

)2

(
2

σ1
σ2

+
σ2
σ1

)2








1/2

, (46)

as long as σ1 �= σ2. Note that if σ1 = σ2, then it is not necessary to Es-
timate the coherence magnitude (see (41) and step 3). We will assume
that γ is real-valued and positive, which is motivated by physical con-
siderations as discussed earlier and in Wilson [7, 8].
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3. Use the estimates for σ1, σ2, and |γ| in the signal eigenvector expres-
sion for e(12)

1 in (38) to create a “search vector” g:

g(xs, ys) =







1
2

(
σ1
σ2

− σ2
σ1

)


1 +

√

1 +
(

2|γ|
σ1
σ2

−σ2
σ1

)2


 a1

γ∗ exp(jω0D12) a2





 =

[
β1 a1

γ∗ exp(jω0D12) a2

]

, (47)

where a1,a2, and D12 are functions of the source location (xs, ys). (If
σ1 = σ2, then the search vector is based on e(12)

1 in (41) instead.)

4. Let e(12)
n , n = 1, . . . , 2N denote the eigenvectors of R(12), ordered

such that the corresponding eigenvalues follow λ
(12)
1 ≥ · · · ≥ λ

(12)
2N .

Then form the matrix

V =
[
e(12)

2 · · · e(12)
2N

]
. (48)

A MUSIC-type spectrum may then be defined as

Pc(xs, ys) =
1

gHVVHg
, (49)

and the value of (xs, ys) that maximizes (49) is an estimate of the
source location.

5. Wax and Kailath [21] proposed an “incoherent” MUSIC-type source
location estimator that ignores coherence between the arrays. The
form of the Wax and Kailath estimator can be expressed as follows:

Pi(xs, ys) =
1

aH
1 V(1)V(1)Ha1 + aH

2 V(2)V(2)Ha2

, (50)

where V(h) = [e(h)
2 , . . . , e(h)

N ] contains the noise eigenvectors of R(h).
This analysis extends to the case of H arrays with a single source.
If the signals are partially coherent at all arrays, then the dimension
of the signal subspace of the combined correlation matrix is H . If K
signals are present, then the combined correlation matrix has signal
subspace with rank KH .

4.2 Examples of Subspace Processing

We present examples of the “partially coherent” MUSIC algorithm (49) and
the “incoherent” MUSIC algorithm (50) with computer simulations and
measured data. First, we simulate a scenario with H = 2 arrays. The in-
dividual arrays are identical and contain N1 = N2 = N = 7 sensors. Each
array is circular and has 4-ft radius, with six sensors equally spaced around
the perimeter and one sensor in the center. Narrowband processing cen-
tered at 40 Hz is assumed, with an SNR of 40 dB/sensor at array 1 and
34 dB at array 2, i.e., Gs,11(ω)/Gw(ω) = 104, Gs,22(ω)/Gw(ω) = 2500. The
coherence is set to two values, γs,12 = 0.9 and 0.999. The arrays are located
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at coordinates (x1, y1) = (0, 150), (x2, y2) = (0, 0), and one source is located
at (xs, ys) = (200, 300), where the units are meters. Source location estima-
tion is performed using M = 30 snapshots, where each snapshots contains
an estimate of the measured complex amplitude at 40 Hz at each sensor.

Results are presented in Figure 16, where part a shows an approximate
CRB as a function of signal coherence.∗ Increasing coherence leads to mod-
est improvement in the localization potential. Figures 16b and 16c contain
representative spectra of incoherent and partially coherent MUSIC, respec-
tively, for coherence γs,12 = 0.9. Note that the incoherent MUSIC spectrum
has a rather broad but unique maximum. The partially coherent MUSIC
spectrum has a sharp ridge in one direction, with multiple peaks along the
ridge. The multiple peaks arise due to the ambiguities in source location
caused by the narrowband signals and large separation between arrays.

Figure 16. (a) CRBs on
localization accuracy.
(b) Incoherent MUSIC
and (c) partially
coherent MUSIC
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Table 1 contains results of Monte Carlo simulations with 100 runs for both
coherence values, γs,12 = 0.9 and 0.999. The incoherent MUSIC performs
close to the approximate CRB in Figure 16a corresponding to γs,12 = 0. Par-
tially coherent MUSIC performs worse than incoherent MUSIC because of
the ambiguities: partially coherent MUSIC sometimes chooses the incorrect
peak along the ridge in the spectrum shown in Figure 16c. Note that par-

∗The CRB is approximate because the mapping of the scaling factor T∆ω
ωs

in (16) to the
number of snapshots M is approximate.
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Table 1. RMS error simulation results for incoherent and partially coherent MUSIC.

Coherence Approx. CRB Incoherent MUSIC Partially Coherent MUSIC

xs ys xs ys xs ys

0.9 1.17 1.10 1.36 1.10 2.14 1.71

0.999 0.81 0.87 1.41 1.16 1.96 1.61

0.0 1.50 1.22

tially coherent MUSIC is more accurate for γs = 0.999 than for γs = 0.9,
suggesting that the ambiguities are less severe when the signal coherence
is larger.

We have applied incoherent MUSIC and partially coherent MUSIC to the
measured data scenario discussed in section 2.2.2 and in Figures 4 and 10.
The data is processed in a narrow band around 39 Hz for the 2-s interval
between 345 and 347 s. Both algorithms produce identical estimates for the
source location in this case, but the spectra for partially coherent MUSIC are
shown in Figure 17. The top panel clearly shows the ambiguities that limit
the performance with narrowband signals. The contour plot in the bottom
panel also shows the periodic structure of the ambiguities.

Figure 17. Partially
coherent MUSIC
spectrum for measured
data.
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5. Moving Sources

One of our objectives in this report is to quantify scenarios in which jointly
processing data from widely spaced sensors has the potential for improved
source localization accuracy, compared with incoherent triangulation/
tracking of bearing estimates. We established in section 2 that the poten-
tial for improved accuracy depends directly on TDE between the sensors.
Then we showed in section 3 that TDE with partially coherent signals is fea-
sible only with an increased time-bandwidth product of the sensor signals.
This leads to a constraint on the minimum observation time, T , in passive
applications where the signal bandwidth is fixed. If the source is moving,
then approximating it as nonmoving becomes poorer as T increases, so
modelling the source motion becomes more important.

Approximate bounds are known [22, 23] that specify conditions of validity
for nonmoving and moving source models. Let us consider H = 2 sensors
with Doppler values α2 > α1 (see (64) for the definitions of α1, α2). If fmax

(Hz) is the maximum signal frequency that is processed, then TDE estima-
tion accuracy is not seriously affected by ignoring source motion, as long
as the time interval T satisfies

T � 1

fmax

(
α2
α1

− 1
) . (51)

Taking typical parameters for ground vehicles in aeroacoustics, let us con-
sider a vehicle moving at 5% the speed of sound (15 m/s), with radial mo-
tion that is in opposite directions at the two sensors. Then α2/α1 − 1 ≈ 0.1
and (51) becomes T � 10/fmax. For fmax = 100 Hz, the requirement is
T � 0.1 s, which, according to the analysis in section 2, yields insufficient
time-bandwidth product for partially coherent signals that are typically en-
countered. Thus motion modeling and Doppler compensation are critical,
even for aeroacoustic sources that move more slowly than in this example.

5.1 Data Model

In this section, we extend the nonmoving source model from section 2 us-
ing first-order motion models (see (52), (53), (67)). The first-order motion
models are simple and accurate over larger time intervals T compared
with the nonmoving source model. However, accurate modeling of more
complex trajectories over longer time intervals requires higher-order poly-
nomial models, with added complexity. The source position trajectory is
modeled as a straight line with constant velocity over an interval of length
T ,

xs(t) = xs,0 + ẋs · (t − t0), t0 ≤ t ≤ t0 + T (52)

ys(t) = ys,0 + ẏs · (t − t0), (53)
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so ẋs, ẏs are the velocity components. The source trajectory parameter vec-
tor is

Θ = [xs,0, ẋs, ys,0, ẏs]T , (54)

and the (time-varying) propagation time from the source to the sensors on
array h follows from (1) and (2):

τh(t) =
dh(t)

c
=

1
c

[
(xs(t) − xh)2 + (ys(t) − yh)2

]1/2 (55)

τhn(t) ≈ −1
c

[
xs(t) − xh

dh(t)
∆xhn +

ys(t) − yh

dh(t)
∆yhn

]

= −1
c

[(cos φh(t))∆xhn + (sinφh(t))∆yhn] . (56)

The bearing and bearing rate are related to the source motion parameters
Θ as

φh(t) = tan−1

[
ys(t) − yh

xs(t) − xh

]
= tan−1

[
ys,0 + ẏs · (t − t0) − yh

xs,0 + ẋs · (t − t0) − xh

]
(57)

φ̇h(t) =
ẏs cos φh(t) − ẋs sinφh(t)

dh(t)
. (58)

The radial velocity of the source with respect to array h is

vr,h(t) = ẋs cos φh(t) + ẏs sinφh(t). (59)

We can insert (52) and (53) into (55) to obtain the following approximation
for the propagation time to array h:

τh(t) = τh(t0)
[
1 +

2 · cos φh(t0) · ẋs · (t − t0)
dh(t0)

+
2 · sinφh(t0) · ẏs · (t − t0)

dh(t0)

]1/2

(60)

≈ τh(t0) +
vr,h(t0)

c
· (t − t0), (61)

where dh(t0) and vr,h(t0) are the source distance and radial velocity at the
start of time interval t = t0. The approximation (61) is valid as long as the
total motion during the time interval T is much less than the range, i.e.,
|2 ẋsT | � dh(t0) and |2 ẏsT | � dh(t0).

Next, we use the approximation (61) and model the received signal at the
reference sensor on array h as

sh (t − τh(t)) = sh

[(
1 − vr,h(t0)

c

)
t − τh(t0) +

vr,h(t0) t0
c

]
(62)

= sh

(
αh t − τh(t0) +

vr,h(t0) t0
c

)
, t0 ≤ t ≤ t0 + T , (63)

where

αh = 1 − vr,h(t0)
c

= 1 − 1
c

[ẋs cos φh(t0) + ẏs sin φh(t0)] (64)
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is the Doppler compression and

τh(t0) =
dh(t0)

c
=

1
c

[
(xs,0 − xh)2 + (ys,0 − yh)2

]1/2 (65)

is the propagation delay at the initial time t = t0. Without loss of generality,
we set t0 = 0, so the received signal at sensor n on array h is

sh (αh t − τh(0) − τhn(t)) , (66)

which is the extension of the signal component of (8) to the moving source
case. Note from (2) that τhn(t) depends on the source location only through
the time-varying bearing φh(t), which we approximate with a first-order
model

φh(t) ≈ φh(t0) + φ̇(t0) · (t − t0), t0 ≤ t ≤ t0 + T . (67)

For a single array h, the Doppler compression αh and time delay τh(t0)
have negligible effect on estimation of the intra-array delays τhn(t), since
αh and τh(t0) are identical for each n = 1, . . . , Nh. Thus, each array can be
processed separately to estimate the bearings φ1(t0), . . . , φH(t0) and bear-
ing rates φ̇1(t0), . . . , φ̇H(t0), and these can be “triangulated” via (57) and
(58) to estimate the source motion parameters Θ in (54). An algorithm [24]
for estimating φh(t0) and φ̇h(t0) is described in section 5.2.

Let us consider the signals received at the reference sensors at each array,
so τhn(t) = 0 in (66):

s1

[(
1 − vr,1(t0)

c

)
t − τ1(t0)

]
, . . . , sH

[(
1 − vr,H(t0)

c

)
t − τH(t0)

]
. (68)

Our modeling assumptions imply that each signal

sh

[(
1 − vr,h(t0)

c

)
t − τh(t0)

]
is a wide-sense stationary Gaussian ran-

dom process. However, for two arrays g, h with unequal Doppler
vr,g(t0) �= vr,h(t0), the signals at arrays g, h are not jointly wide-sense
stationary [22, 25], complicating the analytical description and the CRB
performance analysis. The jointly nonstationary sensor signals generally
are not characterized by a cross-spectral density matrix, TDE with jointly
nonstationary signals as in (68) was derived by Knapp and Carter [22]. The
CRB analysis was rigorously justified by Schultheiss and Weinstein [26],
and they extended the results to CRBs on differential Doppler. A clever
transformation is used so that the jointly nonstationary signals in (68) are
locally modeled by a CSD of the form (14), and Schultheiss and Weinstein
show [25] that the representation is accurate for CRB analysis.

Formulating the results of Schultheiss and Weinstein [25] for the case of
partially coherent signals,∗ we make the following observations for H = 2
arrays. The results are valid for large observation time (T much larger than
the coherence time of the signals and noise). The TDE is D12 = τ1(t0)−τ2(t0)
and the differential Doppler is ∆v12 = vr,1(t0) − vr,2(t0).

∗The signal coherence between the signals at arrays g and h in (68) is defined assuming
perfect compensation of the Doppler compression αg, αh, thus yielding the definition in (7).
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• Estimation of TDE and differential Doppler are decoupled, so the
CRB on D12 is given by (24), which is identical to the nonmoving
source case.

• The threshold coherence analysis for TDE in (30) and Figure 8 extends
to the moving source case. In the best case that Doppler effects are
perfectly estimated and compensated, the TDE problem that remains
is identical to the nonmoving source case. Doppler estimation is less
demanding in terms of time-bandwidth product compared with TDE.
Indeed, Doppler estimation is possible with sinusoidal signals that
have negligible bandwidth [25].

The CRB on differential Doppler [25], modified for partially coherent
signals, is

CRB(∆v12) =
24π

T
( c

T
)2

[
2

∫ ωs

0
ω2 SNR (|γs,12(ω)|) dω

]−1

. (69)

Note that (69) is a scalar multiple of the CRB on TDE in (24). The
CRB on differential Doppler may be achievable in scenarios where
the time-bandwidth product is insufficient for TDE.

Interestingly, differential Doppler provides sufficient information for
source localization, even without TDE, as long as five or more sen-
sors are available [26]. Thus the source motion may be exploited in
scenarios where TDE is not feasible, such as narrowband signals.

• We discussed TDE with H > 2 sensors in section 2, concluding that
pairwise processing of TDEs D1H , . . . , DH−1,H with a reference sen-
sor H is nearly optimum for scenarios of interest (see (31)). A similar
result holds for differential Doppler estimation [26], where pairwise
estimation of ∆v1H , . . . ,∆vH−1,H is nearly as accurate as estimation
of all pairs ∆vgh, as long as H · SNR(|γs|) � 1.

5.2 An Algorithm

The parameters that can be directly estimated from the sensor data are the
bearings φ1(t0), . . ., φH(t0), bearing rates φ̇1(t0), . . . , φ̇H(t0), pairwise time
differences D1H = τ1(t0) − τH(t0), . . ., DH−1,H = τH−1(t0) − τH(t0), and
differential Doppler ∆v1H = vr,1(t0)−vr,H(t0), . . . ,∆vH−1,H = vr,H−1(t0)−
vr,H(t0). Equations (57), (58), (64), and (65) define the nonlinear relations
that “triangulate” these parameters and relate them to the source motion
parameters Θ = [xs,0, ẋs, ys,0, ẏs]T .

A distributed processing algorithm is outlined next, and parts of the algo-
rithm are illustrated with measured aeroacoustic data in section 6.

1. Use the local polynomial approximation (LPA) beamformer [24] at
each array to estimate the bearings and bearing rates. The LPA beam-
former in Katkovnik and Gershman [24] is formulated for narrow-
band processing, and it is a generalization of the classical beamformer
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to moving sources. We extend it in a straightforward way to wide-
band signals by incoherently averaging the LPA beampatterns at dif-
ferent frequencies.

2. Solve (57) and (58) to obtain initial estimates of the source motion pa-
rameters Θ. These estimates correspond to incoherent triangulation
of the bearings and bearing rates from individual arrays.

3. Estimate the Doppler compression factors α1, . . . , αH , compensate for
Doppler, and test whether the signals at distinct arrays have sufficient
coherence, fractional bandwidth, and time-bandwidth product to en-
able TDE between arrays (see section 2 for the conditions).

4. If the conditions are not met, then incoherent triangulation of the bear-
ings and bearing rates is nearly optimum, and further joint processing
is not informative.

5. If the conditions are met, then identify a reference array H (the ar-
ray with maximum SNR) and estimate the time differences D1H , . . .,
DH−1,H and differential Dopplers ∆v1H , . . ., ∆vH−1,H . The maximum
likelihood solution involves wideband ambiguity function search over
Doppler and TDE [22], but computationally simpler alternatives have
been investigated [26].

6. A suboptimum procedure is to avoid the joint Doppler and TDE es-
timation in the preceding step, and instead use the initial Doppler
estimates from steps 1 and 2 and perform TDE after approximate
Doppler compensation. With this approach, triangulation of the TDEs
via (65) will improve the estimates of xs,0 and ys,0 only (and not the
source velocity ẋs, ẏs).

7. If multiple sources are present, then the LPA beamformer in step 1
may be used to separate the source signals at each array prior to
Doppler/TDE estimation.

The LPA beamformer in steps 1 and 7 is illustrated in section 6 for a two-
source scenario based on measured aeroacoustic data. Examples of TDE
(step 5) with measured data were presented in section 3.4.
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6. Example with Two Moving Sources

We present an application of the LPA beamformer [24] to measured aeroa-
coustic data with two ground vehicles: an M1 tank and an M3 tracked
armored vehicle. The vehicle trajectories over a 10-s segment are shown
in Figure 18a. Two arrays, labeled 8B and 8C, are separated by about 23
m. Each array is circular with N = 7 sensors, 4-ft radius, and six sen-
sors equally spaced around the perimeter with one sensor in the center.
We present results based on processing the data at array 8B, for which the
bearing and bearing rate of the sources are shown in Figure 18b. The bear-
ing of the M3 varies by more than 30◦ over the 10-s time interval. The range
of the M3 is closer at about 100 m, with the M1 range at approximately 200
m.

The data from array 8B is processed over a wide bandwidth from 30 to
150 Hz. The beampattern for a classical beamformer based on a nonmoving
source model is shown in Figure 18c. The beampattern is the incoherent
sum of narrowband beampattern over the 30- to 150-Hz frequency band.
The peak of the beampattern is located at approximately the mean bearing
of the stronger source (M3) over the 10 s interval.

The beampattern of the LPA beamformer is shown in Figure 19a. The LPA
beampattern exploits a first-order model for time-varying bearing, as in
(67). The LPA beampattern is two-dimensional, with axes of initial bearing
φ(t0) and bearing rate φ̇(t0). The LPA beamformer in Katkovnik and Ger-
shman [24] is formulated for narrowband processing, so we extend to the
wideband case by incoherently adding the narrowband LPA beampatterns
over the frequency range. The peak of the beampattern in Figure 19a is close
to the true values of φ(t0), φ̇(t0) for the M3 that are shown in Figure 18b.
The location of the weaker M1 source is not evident in the LPA beampattern
in Figure 19a, so we subtract an estimate of the stronger source from the
data. The subtraction is performed based on the bearing and bearing rate
estimates from Figure 19a. The subtraction is coherent over the process-
ing bandwidth and includes the time-varying bearing. The LPA beampat-
tern after subtraction is shown in Figure 19b, which indicates the bearing
and bearing rate of the weaker M1 source. This example illustrates the gain
in resolution that is achieved by exploiting the source motion in a beam-
former.
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Figure 18. (a) Array
locations and trajectory
of M1 and M3 vehicles
over a 10-s time
interval. (b) Bearing and
bearing rate of sources
with respect to array 8B.
(c) Beampattern of
classical beamformer
based on nonmoving
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Figure 19.
(a) Beampattern of LPA
beamformer, showing
the location of the
stronger source (M3).
(b) Beampattern of LPA
beamformer after
subtracting an estimate
of the strong source
signal from the data,
showing the location of
the weaker source (M1).
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7. Summary and Concluding Remarks

We have presented in this report an analysis of source localization with sen-
sors arranged in an “array of arrays” configuration. We have paid partic-
ular attention to aeroacoustical localization of ground vehicles, where the
signals measured at widely separated sensors are not perfectly coherent
due to random propagation effects. We analyzed an algorithm that com-
bines with pairwise TDE between separate arrays. We showed that this
scheme incorporates distributed processing and data compression so that
the communication bandwidth with a fusion center is reduced, with little
loss in localization accuracy. The algorithm was presented first for a single,
nonmoving source, and then we extended to the case of moving sources.
The algorithm for moving sources involves estimation of bearing-rate and
differential Doppler between sensors. We provided an analysis based on
Ziv-Zakai bounds that quantifies the requirements on SNR, signal band-
width, signal coherence, and observation time so that joint (coherent) pro-
cessing of widely spaced sensor data provides improved localization ac-
curacy. We presented computer simulations and results from processing
measured data to illustrate and support the theoretical developments in
the report.

We are continuing our research on aeroacoustic source localization and
tracking in several ways. In particular, we are investigating algorithms that
exploit the “sum of harmonics” structure that characterizes the acoustical
signature of many ground vehicles. We are also investigating joint algo-
rithms for localization, tracking, and classification that share information
to improve performance.
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